

# C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Sciences and Life Sciences Course: Bachelor of Science (Chemistry)

Semester: II

Subject Code: MDC202-1C

Subject Name: Fundamentals of Spectroscopy

|               |         |                              |                                 | Teaching<br>hours/<br>Week |                             |   |                       | Evaluation Scheme/ Semester |                |                                  |           |              |           |              |           |              |     |
|---------------|---------|------------------------------|---------------------------------|----------------------------|-----------------------------|---|-----------------------|-----------------------------|----------------|----------------------------------|-----------|--------------|-----------|--------------|-----------|--------------|-----|
| Sr<br>·<br>No | Categor | Subject Name T h Tu Pr hours |                                 | t                          | Continuous and End Semester |   | Internal End Semester |                             |                | Total                            |           |              |           |              |           |              |     |
|               |         |                              |                                 |                            |                             |   |                       |                             | Ma<br>rks      | Marks                            | Mar<br>ks | Duratio<br>n | Mark<br>s | Duratio<br>n | Mark<br>s | Duratio<br>n |     |
| 4             |         | MDC2<br>02-1C                | Fundamentals of<br>Spectroscopy | 3                          | -                           | 2 | 5                     | 4                           | 10<br>10<br>05 | Assignment<br>Quiz<br>Attendance | 50        | 2            | 25        | 1            | -         | -            | 100 |

#### **AIM**

- The aim is to enable students to acquire a specialized understanding of how light interacts with molecules and materials.
- Different methods of optical spectroscopy and their use to examine chemical and physical properties are addressed at an advanced level.

### **COURSE CONTENTS**

# **Course Outline for Theory**

| UNIT | COURSE CONTENT                                                                                                 |   |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
|      | <b>Definition of the spectrum</b> - Electromagnetic radiation - quantization of different                      |   |  |  |  |  |
|      | forms of energies in molecules (translational, rotational, vibrational, and electronic) -                      |   |  |  |  |  |
| I    | Born Oppenheimer approximation.                                                                                |   |  |  |  |  |
|      | Microwave Spectroscopy - theory of microwave spectroscopy - selection rule -                                   |   |  |  |  |  |
|      | Calculation of moment of inertia and bond length of diatomic molecules.                                        |   |  |  |  |  |
|      | UV - Visible Spectroscopy - Absorption laws. Calculations involving Beer                                       |   |  |  |  |  |
|      | Lambert's law - instrumentation - photo colorimeter and spectrophotometer- block                               |   |  |  |  |  |
| II   | diagrams with description of components - theory - types of electronic transitions -                           |   |  |  |  |  |
|      | chromophore and auxochromes - Absorption bands and intensity -factors governing                                |   |  |  |  |  |
|      | absorption maximum and intensity                                                                               |   |  |  |  |  |
|      | I. R. Spectroscopy – principle - modes of vibration of diatomic, triatomic linear                              |   |  |  |  |  |
| III  | (CO <sub>2</sub> ), and nonlinear triatomic molecules (H <sub>2</sub> O) - stretching and bending vibrations - | 9 |  |  |  |  |
|      | selection rules. Expression for vibrational frequency (derivation not needed).                                 |   |  |  |  |  |
|      | X-ray Diffraction: Diffraction geometry: Bragg's law, Diffraction Intensity:                                   |   |  |  |  |  |
| IV   | Scattering from atoms, from the contents of a unit cell; structure factor function,                            |   |  |  |  |  |
| 1.7  | Application to polycrystal diffraction: powder diffraction and crystal structure                               |   |  |  |  |  |
|      | determination., Diffractometer measurements\                                                                   |   |  |  |  |  |
| V    | Basics of TEM                                                                                                  | 9 |  |  |  |  |
| •    | TEM instrumentation: electron sources; electromagnetic lenses; geometric and wave                              |   |  |  |  |  |

| optics applied to TEM; lens about  | errations and reso | olution, Interaction | between fast |
|------------------------------------|--------------------|----------------------|--------------|
| electron and thin crystal (TEM sai | mple), TEM samp    | ole preparation      |              |

#### **Course Outline for Practical**

| SR.<br>NO | COURSE CONTENT                                                        |  |  |  |  |
|-----------|-----------------------------------------------------------------------|--|--|--|--|
| 1         | Applications and Uses of Electromagnetic Radiation in the real world. |  |  |  |  |
| 2         | Demonstrative experiments on Microwave Spectroscopy                   |  |  |  |  |
| 3         | Demonstrative experiments on UV Visible Spectroscopy                  |  |  |  |  |
| 4         | Demonstrative experiments of IR Spectroscopy                          |  |  |  |  |
| 5         | Demonstrative experiments on X-ray diffractions                       |  |  |  |  |
| 6         | Demonstrative experiments of TEM                                      |  |  |  |  |

#### TEACHING METHODOLOGY

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)

#### **LEARNING OUTCOME**

- Basic understanding of light as electromagnetic radiation, their parameters, and interaction with matter
- To learn about various spectroscopy and their applications in the real world.
- Understanding various parts of instruments, sampling methods, and analysis in given spectroscopic techniques

## ARRANGEMENT OF LECTURE DURATION AND PRACTICAL SESSION AS PER DEFINED CREDIT NUMBERS

| Units                  |        | Duration<br>Hrs.) | Cre    | ation of<br>edits<br>mbers) | Total<br>Lecture<br>Duration | Credit<br>Calculation |
|------------------------|--------|-------------------|--------|-----------------------------|------------------------------|-----------------------|
|                        | Theory | Practical         | Theory | Practical                   | Theory+<br>Practical         | Theory+<br>Practical  |
| Unit – 1               | 15     |                   |        |                             |                              |                       |
| <b>Unit</b> – <b>2</b> | 15     | 30                | 3      | 1                           | 45+30                        | 4                     |
| Unit – 3               | 15     |                   |        |                             |                              |                       |
| TOTAL                  | 45     | 30                | 3      | 1                           | 75                           | 4                     |

#### **EVALUATION**

| Theory Marks | Practical Marks | Total Marks |  |  |
|--------------|-----------------|-------------|--|--|
| 75           | 25              | 100         |  |  |

#### REFERENCE BOOKS

1 Elements of Analytical Chemistry

R. Gopalan, P.S. Subramanian, K. Rengarajan

| 2  | Fundamentals of Analytical Chemistry                  | D.A. Skoog and D.M. West                                        |
|----|-------------------------------------------------------|-----------------------------------------------------------------|
| 3  | Principles of Instrumental Methods of Analysis        | D.A Skoog and Saunders                                          |
| 4  | Instrumental Methods of Analysis                      | Willard Merit Dean and Settle                                   |
| 5  | "Elements of X-Ray Diffraction                        | Cullity, B.D., and Stock, R. S                                  |
| 6  | Advanced Techniques for Materials<br>Characterization | Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., |
| 7  | Molecular Spectroscopy                                | Jeanne J. McHale                                                |
| 8  | X-Ray diffraction-A practical approach                | C. Suryanarayana and M. Grant Nortan                            |
| 9  | Spectroscopy: Fundamentals and Data<br>Interpretation | N K Fuloria, S Fuloria                                          |
| 10 | In Situ Transmission Electron Microscopy Experiments  | Renu Sharma, Springer                                           |